How to Quote - The angle at the centre is double the angle at the circumference or, the angle at the circumference is half the angle at the centre.

Hypothesis - Let $\angle A B C$ be an angle at the circumference and $\angle A O C$ the angle at the centre insisting on the same arc $A C$

Theses $-\angle A O C=2 \times \angle A B C$

X

> Proof - Let $\angle O B C=x$ and $\angle O B A=y$ so that $\angle A B C=x+y$
> Consider triangle $O B C$:
> $O C=O B$ because they are both radii. Therefore, triangle $O B C$ is isosceles and consequently, $\angle O C B=\angle O B C=x$. Therefore, $\angle C O B=180^{\circ}-2 x$, since angle in triangles add up to 180°.
> Similarly, consider triangle $A B O$:
> $O B=A O$ because they are both radii. Therefore, triangle $A O B$ is isosceles and consequently, $\angle B A O=\angle A B O=y$. Therefore, $\angle A O B=180^{\circ}-2 y$, since angle in triangles add up to 180°.
> Now, $\angle A O C=360^{\circ}-\angle C O B-\angle A O B$, since angles at a point add up to 360°. Substituting the expressions for $\angle A O B$ and $\angle C O B$ obtained earlier in the equation above, we obtain:
> $\angle A O C=360^{\circ}-\left(180^{\circ}-2 x\right)-\left(180^{\circ}-2 y\right)=360^{\circ}-180^{\circ}+2 x-180^{\circ}+$ $2 y=2 x+2 y=2(x+y)=2 \times \angle A B C$

QED

How to Quote - Angles at the circumference insisting on the same arc are equal
Hypothesis - Let $\angle A B D$ and $\angle A C D$ be two angles at the circumference insisting on the same arc $A D$
Theses $-\angle A B D=\angle A C D$

Proof - Let $\angle A O D$ be the angle the centre insisting on arc $A D$ and let $\angle A O D=2 x$. Then, $\angle A B D=x$, since the angle at the circumference is half the angle at the centre insisting on the same arc.
Similarly, $\angle A C D=x$, since the angle at the circumference is half the angle at the centre insisting on the same arc.
It follows that $\angle A B D=\angle A C D$

QED

X

\square

How to Quote - Angles in a semicircle are right
Hypothesis - Let triangle $A B C$ be inscribed in a semicircle with centre O and let $A C$ be the diameter of the semicircle.
Theses $-\angle A B C=90^{\circ}$

Proof - $\angle A O C$ is the angle at the centre insisting on arc $A C$.
Since the line $A C$ is the diameter, $\angle A O C=180^{\circ}$.
Then, $\angle A B C=90^{\circ}$ since it's an angle at the circumference also insisting on arc $A C$ and the angle at the circumference is half the angle at the centre insisting on the same arc.

X

x

Proof (by contradiction) - Let's assume radius $O B$ is not perpendicular to line $A C$. This implies that there must be another segment $O D$ such that $\angle O D B=90^{\circ}$ and let E be the point at which $O D$ intersects the circumference. Since we assumed that $\angle O D B=90^{\circ}$ then $\angle O B D$ and $\angle B O D$ both must be acute since angles in triangles add up to 180°. Consequently, $O B$ must be the longest side of triangle $O B D$ since the longest side of a triangle always faces the largest angle. Therefore, we can write $O B>O D$. But $O B=O E$ since both radii, and therefore we must also have $O E>O D$. This is clearly a contradiction since $O D=O E+E D$, by construction.
We can therefore conclude that if $O B$ is not not perpendicular to $A C$, then $O B$ must be perpendicular to $A C$ and $\angle O B C=90^{\circ}$

Proof - Let $\angle F C B=x$. Then $\angle O C B=90^{\circ}-x$ since the radius is perpendicular to the tangent. Consider triangle $C O B: O C=O B$ since both radii. Therefore, triangle $C O B$ is isosceles and consequently $\angle O B C=\angle O C B=90^{\circ}-x$. Then, since angles in triangles add up to $180^{\circ}, \angle C O B=180^{\circ}-\angle O B C-\angle O C B=180^{\circ}-\left(90^{\circ}-x\right)-\left(90^{\circ}-x\right)=$ $180^{\circ}-90^{\circ}+x-90^{\circ}+x=2 x . \angle C O B=2 x$ is the angle at the centre insisting on arc $C B . \angle C A B$ is an angle at the circumference also insisting on $\operatorname{arc} C B$. Therefore, $\angle C A B=x$, since the angle at the circumference is half the angle at the centre insisting on the same arc. It follows that $\angle B C F=\angle B A C$

QED

Proof - Consider triangles $O B A$ and $O C A: O B=O C$, since they are both radii, $\angle O B A=$ $\angle O C A=90^{\circ}$ because the radius is perpendicular to the tangent and hypotenuse $A O$ is in common to both triangles. It follows that triangles $O B C$ and $O C A$ are congruent (since right angled triangles with congruent hypotenuse and one other side) and therefore $A B=A C$, since corresponding sides in congruent triangles.

Hypothesis - Let $A B$ be a cord of a circle with centre O, let $O D$ be the radius perpendicular to the cord $A B$ and let C be point where $O D$ intersects $A B$

Theses $-A C=C B$

X

QED
Proof - Consider triangles $A O C$ and $B C O: \angle B C O=\angle A C O=90^{\circ}$ by construction, hypotenuses $O B$ and $O A$ are equal since $O B$ and $O A$ are both radii, and $O C$ is in common to both triangles. It follows that triangles $A C O$ and $B C O$ are congruent (since right angled triangles with congruent hypotenuse and one other side) and therefore, $A C=C B$ since corresponding sides in congruent triangles.

4
$>$

